前些天在讨论两军交战的兵力与单兵战斗力因素的时候,随手在微博中写下下列方程:
$\frac{dA}{dt} = - b B\\ \frac{dB}{dt} = - a A$
其中A,B为双方兵力,a,b 分别为双方战斗力系数(均为无量纲正数)。方程表达的是,一方兵力损耗速率等于对手的兵力乘以对手的单位战斗力。方程虽然简单,但却有 non-trivial 的结果。简单的分析得出 $a A^2 - b B^2 = const.$, 是系统的 invariant (不随时间变化)。代入初始值 $A_0,B_0$, 我们有
$a A^2 - b B^2 = a{A_0}^2 - b {B_0}^2 $
在这个模型下,战斗的胜负取决于双方的单兵战斗力乘以兵力的平方。单兵战斗力乘以兵力平方大的一方将取胜(对方缩减为零,而己方不为零)。如果一方兵力是另一方的N倍,则兵力少的一方单兵战斗力必须是N*N倍才能平衡。这是个有趣的结果。经查原来这是1916年一战期间被发现的一个规律,称为 Lanchester's Square Law (兰切斯特平方法则)。
下面我们考虑一个非对称的情况,A方的所有兵力都能够充分运用,对对手B进行毁伤;但B 由于技术限制, 只能有效运用固定数量的兵力 C (常数)。这种情况可能是由于双方的技术差异。新方程为
$\frac{dA}{dt} = - b C \\ \frac{dB}{dt} = - a A$
首先解出 A
$A(t) = -bC t + A_0$
然后解出 B
$\frac{dB}{dt} = - a (A_0 - bCt) \\
B = - a (A_0 t -\frac{1}{2} b C t^2) +c \\
B(t) = B_0 - a A_0 t + \frac{ab C}{2} t^2$
双方在战斗初期兵力减少的比例为 $\frac{a A_0}{ b C}$.